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Abstract. The renormalization of the relativistic self-consistent Hartree-Fock approximation is restudied.
It is shown that the renormalization procedure suggested by Bielajew and Serot can be greatly simplified
and the renormalization achieved in a way no more complicated than that of the relativistic self-consistent
Fock approximation, if the parameters in the counterterms are allowed to be density-dependent and the
renormalization of the tadpole self-energy is treated appropriately. A transformation relation between the
four- and three-dimensional representation of the baryon self-energy is presented and a self-consistent
Hartree-Fock scheme different from that considered by Bielajew and Serot studied. The renormalized
integral equations for the baryon self-energy which includes effects from the Dirac sea are reformulated in
a three-dimensional form. Explicit expressions are derived.

PACS. 21.65.+f Nuclear matter – 21.60.Jz Hartree-Fock and random-phase approximations – 11.10.Gh
Renormalization

1 Introduction

Quantum hadrodynamics (QHD) [1] has been applied ex-
tensively to the study of nuclear phenomena. At the level
of the mean-field and the relativistic Hartree approxima-
tion (RHA) it has achieved considerable success in the
description of many bulk and single-particle (sp) proper-
ties of nuclei. Since it is a renormalizable quantum field
theory, in principle it is possible to calculate corrections to
the above approximations systematically. However, severe
difficulties arise if one intends to take account of quantum
corrections which go beyond the one-loop RHA. Owing to
the strong couplings between hadronic fields, perturbation
theory should not be applied in a naive way. One must at
least consider summation of some appropriately selected
partial infinite series. But even attempts to formulate the
renormalization of the relativistic self-consistent Hartree-
Fock approximation (RSHFA) in a way which is conve-
nient for calculations have not yet succeeded. Bielajew and
Serot (BS) [2] studied the problem in a comprehensive pa-
per more than a decade ago. As a prototype they consid-
ered the relativistic σ−ω model and nuclear matter. Since
the ω-field causes no special trouble for the renormaliza-
tion procedure, for simplicity only the scalar σ-meson ex-
change was considered as an illustration. RSHFA is shown
in Fig.1. In this approximation the baryon propagator is
given by

GHF (k) = G0(k) +G0(k)ΣHF (k)GHF (k) (1a)

ΣHF (k) = ΣT
HF (k) +Σx

HF (k) (1b)

where the self-energies ΣT
HF and Σx

HF are contributed by
the tadpole and exchange diagram, respectively. The self-
consistency considered by BS is realized by using GHF (k)
instead of G0(k) to calculate the tadpole and exchange
loops so that GHF (k) occurring in these loops is the
same as that given by (1a). One of the chief difficulties
in RSHFA is due to the fact that one must simultaneously
remove the divergences from all orders in perturbation
theory. If ΣT

HF is neglected or need not be considered, the
result is referred to as the relativistic self-consistent Fock
approximation (RSFA). In this case, the self-energy con-
tributed by the exchange diagram will be denoted simply
by ΣF . Using the spectral representation for the baryon
propagator, Wilets and collaborators [3] as well as Biela-
jew [4] and BS have successfully achieved the renormaliza-
tion of ΣF for the case of zero-density. For finite baryon
density the formulation of BS is simpler. However, the re-
sult of BS for the renormalization of RSHFA is too compli-
cated for practical calculations. The aim of this paper is to
find a calculable scheme so that the implication of RSHFA
can be studied. In order to avoid unnecessary complica-
tions, we shall also consider nuclear matter and the simple
model in which baryons couple only with σ-mesons. The
Lagrangian density may be written as

Ls = −ψ̄(γµ∂µ+M)ψ− 1
2

(∂µφ∂µφ+m2
sφ

2)+gsψ̄ψφ (2a)

LCTC = ζN ψ̄γµ∂µψ +Mcψ̄ψ

+
1
2
ζs∂µφ∂µφ− γsNN ψ̄ψφ+ U(φ) (2b)
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Fig. 1. a The baryon propagator,
b self-energy in the relativistic self-
consistent Hartree-Fock approxima-
tion (RSHFA)

U(φ) = α1φ+
1
2!
α2φ

2 +
1
3!
α3φ

3 +
1
4!
α4φ

4 (3)

where we have used the notation:∂µ = ∂/∂xµ ,xµ = (x, ix0)
and x2 = xµxµ = x2 − x2

0 with x0 ≡ t. In the more strin-
gent sense of multiplicative renormalization, one should
include the terms φ, φ3 and φ4 in (2a). As it is irrelevant
for our present consideration, we shall follow BS and write
the Lagrangian density as L = Ls + LCTC where CTC
means the counterterm correction. Though U(φ) itself is
physically meaningful and useful [5,6], it is introduced in
RHA mainly for the purpose of cancelling the divergences
in ΣT

HF . It turns out that a reasonable correction to the
energy density is also obtained in this way [7]. Clearly in
order to ascertain the meaning of this correction, the addi-
tional effect of Σx

HF should be studied. This has not been
done yet. It is known [8,9] that the tadpole self-energy ΣT

caused by the scalar meson can be written rigorously as

ΣT = igs < φ(x) >= igs < φ(0) > (4)

which is a density-dependent constant. As is shown in [2-
4], the renormalization of RSFA can be done neatly and
straightforwardly, if the spectral representation technique
is used. Why does it become so unthinkably complicated,
if in addition

∑T
HF = igs < φ >HF is taken into account,

though the latter is but a constant? We would like to
demonstrate that the above complication will disappear,
if the renormalized parameters in the counterterms are al-
lowed to be density-dependent. As is well known [2], the
baryon density may be written as ρB = (−BµBµ)

1
2 , where

in the rest frame of nuclear matter one has Bµ = δµ4iρB .
Thus, no violation of the symmetry properties of LCTC
will be caused by such an assumption and the latter may
be regarded as an effective way to take account of the
density-dependence. In order to simplify the calculation
and to take account of the density-dependence in an easier
way, there are even suggestions [10] that the parameters
in Ls may be density-dependent. Evidently our renormal-
ization procedure applies to this case as well, though for
simplicity we shall not consider it here. It will be shown

that the renormalization of RSHFA is no more compli-
cated than that of RSFA, if an appropriate treatment of
the tadpole renormalization is made. However, the four-
dimensional integrals involved in the integral equations
are still too complicated to calculate. Thus, a new formu-
lation suiting for practical calculations has to be found.
Besides the self-consistent scheme considered by BS in
[2], we note that there is the original HF self-consistent
scheme, which can be formulated in a form quite simi-
lar to the BS consideration. It also achieves a summation
of a partial infinite series and thus provides a way to go
beyond the simple perturbation calculation. Further we
would like to emphasize that it may be regarded as more
relevant to the eigenvalue equation, as it refers directly to
the self-consistent HF potential and will heareafter be re-
ferred to as the potential scheme. It is shown that in this
scheme the renormalization of the baryon self-energy be-
comes much simpler and the integral equaitons obtained
are solvable and can be used for practical calculations.

The organization of this paper is as follows. In Sec. 2
the renormalization of RSHFA is considered. Renormal-
ized finite integral equations of the baryon self-energy for
both the zero and finite baryon density are derived. The
renormalization of the meson propagator in RSHFA is
discussed in Sec. 3. In Sec. 4 a transformation relation
between the four- and three- dimensional representation
of the baryon self-energy is presented and a closed ex-
pression for the latter is derived in Sec. 5. In Sec. 6 we
shall consider the potential scheme and discuss its rela-
tion with the scheme considered by BS. It is emphasized
that the relativistic natural orbitals may constitute a more
convenient basis for the baryon sp states. Explicit finite
three-dimensional integral equations for the renormalized
baryon self-energy which includes vacuum polarization ef-
fects from the Dirac sea are derived in Sec. 7. In order
to cover the case of complex eigenvalues, a biothonormal
reperesentation is presented in Sec. 8. The last section
contains some concluding remarks and discussion.
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2 Renormalization of relativistic
self-consistent Hartree-Fock approximation

We shall show that the renormalization procedure for
the relativistic self-consistent Hartree-Fock approximation
(RSHFA) is almost the same as for the relativistic self-
consistent Fock approximation (RSFA) [2-4], if the pa-
rameters in the counterterms are allowed to be density-
dependent. The baryon propagator is expressed as

Gαβ(x = x1 − x2) = < T [ψα(x1)ψ̄β(x2)] >

=
∫

d4k

(2π)4
eikµxµGαβ(k), (5a)

G(k) = G0(k) +G0(k)Σ(k)G(k)

= −
[
γµkµ − iM +Σ(k)

]−1

, (5b)

where we have used the shorthand notation < O >≡<
ψ0|O|ψ0 >, |ψ0 > denotes the exact ground state and
(5b) is the Dyson equation. In RSHFA the renormalized
baryon self-energy ΣHF = ΣT

HF +Σx
HF can be written in

the form:

ΣT
HF = −i g

2
s

m2
s

∫
dτq

(2π)4
eiq0εTr[GHF (q)] +ΣT

CTC

= igs < φ(0) >HF +ΣT
CTC , (6)

Σx
HF (k) = −g2

s

∫
dτq

(2π)4
GHF (q)∆0(k − q) +Σx

CTC(k)

= Σ̂x
HF (k) +Σx

CTC(k), (7)

where ∆0(k − q) = −i[(k − q)2 + m2
s − iε]−1 is the non-

interacting σ−meson propagator, τ = 4 − δ, δ −→ 0+
and a hat indicates that the quantity has not yet been
renormalized. The contribution of the mass counterterm
Mcψ̄ψ to the self-energy can be calculated easily by per-
turbation theory. It is given by iMc. Since Mc may be
density-dependent, clearly in order to remove the diver-
gence in ΣT

HF , we may simply set ΣT
CTC = iMT , where

MT denotes a part of Mc. This shows that there is no need
to separate the infinity in ΣT

HF into some partial infinities
and then to introduce U(φ) to cancel them individually.
We note that we also need a mass counterterm Mx for the
renormalization of Σx

HF . Since ΣHF = ΣT
HF + Σx

HF , it
is obvious that MT and Mx are additive, i.e. we may set
iMc = i(MT +Mx), which will not only cancel the infinity
in ΣT

HF but also the kµ−independent divergence in Σx
HF

(see below). From (5b) one has

GHF (k) = −[γµkµ − iM + ig < φ >HF

+iMT +Σx
HF (k)]−1. (8)

According to the modified Feynman prescription we shall
always understand M as M − iεη(k2, k0), if the latter is
not indicated explicitly. Here we have

η(k2, k0) =
1
2
{1 + sign(|k| − kF )

−sign(k0)[1− sign(|k| − kF )]} (9)

ε −→ 0+ and signx = x/|x|. Set Me = M − gs < φ >HF
−MT . From (8) the Dyson equation may be rewritten in
the form

GHF (K) = G0
e(k) +G0

e(k)Σx
HF (k)GHF (k) (10)

G0
e(k) = (γµkµ + iMe)[

−1
k2 +M2

e − iε

+
πi

E0
e (k)

θ(kF − |k|)δ(k0 − E0
e (k))]

≡ G0
ev(k) +G0

ed(k) (11)

where E0
e (k) = [k2 + M2

e ]
1
2 . Since Me is independent of

kµ, we note that G0
ev(k) = −[γµkµ − i(Me − iε)]−1 may

be interpreted mathematically as a non-interacting prop-
agator of a baryon whose mass has a value of Me, though
Me is density-dependent. The renormalized Me is finite
and may be regarded as a parameter to be determined by
experimental data, for instance, by the saturation proper-
ties of nuclear matter or by a variational calculation which
minimizes the ground state energy. Let us introduce a new
baryon propagator GvHF defined by

GvHF (k) = G0
ev(k) +G0

ev(k)Σxv
HF (k)GvHF (k) (12)

Σxv
HF (k) = −g2

s

∫
dτq

(2π)4
GvHF (q)∆0(k − q)

+Σxv
CTC(k) (13)

We note that through Me, GvHF has already taken the tad-
pole contribution into account. However, if Me is under-
stood simply as the mass of a baryon, then from Eqs.(11-
13) one sees that GvHF is equivalent to a baryon propa-
gator at zero-density. It is clear that the renormalization
of Σxv

HF can be carried out in the same way as it is for
RSFA. Obviously the spectral representation of GvHF can
be written as

GvHF (k) = −Z2
γµkµ + iMt

k2 +M2
t − iε

−
∫ ∞
m2

1

dm2 γµkµαHF (−m2) + iMtβHF (−m2)
k2 +m2 − iε (14)

where m1 = Mt + ms is the threshold of the meson-
production continuum. Substituting (14) into (13), one
finds that Σxv

HF can be reduced to the following form

Σxv
HF (k) = γµkµâv(k2)− iMeb̂v(k2) +Σxv

CTC(k) (15a)

= γµkµav(k2)− iMebv(k2) (15b)

where âv and b̂v are infinite. For algebraic convenience we
shall use the intermediate renormalization [11]. Using the
nucleon mass and wavefunction counterterms in LCTC , we
may write the counterterm in (15a) as

Σxv
CTC(k) = iMx − ζNγµkµ (16)
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where Mx and ζN can be determined by the following
renormalization conditions

Σxv
HF (k)

∣∣∣
kµ

= 0;
∂

∂(γνkν)
Σxv
HF

∣∣∣
kµ=0

= 0 (17)

From (14–17) and by means of the dimensional regulariza-
tion as well as Feynman’s integral parameterization, one
gets

av(k2) = âv(k2)− âv(0)

= − g2
s

16π2

∫ ∞
0

dm2

∫ 1

0

dxfα(−m2)x

× ln
K2(x,m2, k2)
K2(x,m2, 0)

(18a)

bv(k2) = b̂v(k2)− b̂v(0)

=
g2
s

16π2

[
Mt

Me

] ∫ ∞
0

dm2

∫ 1

0

dxfβ(−m2)

× ln
K2(x,m2, k2)
K2(x,m2, 0)

(18b)

fγ(−m2) = Z2δ(m2 −M2
t )

+θ(m2 −m2
1)γHF (−m2) (18c)

K2(x,m2, k2) = (1− x)m2 + xm2
s + x(1− x)k2 (18d)

where θ denotes the step function. It is seen that the above
results are similar to those obtained in [2] and [4] for RSFA
at zero density, except that Me now contains the contri-
bution from the tadpole self-energy and a different set of
renormalization conditions is chosen. Substituting (15b)
into (12), we get

GvHF (k)

= − γµkµ(1 + av(k2)) + iMe(1 + bv(k2))
k2(1 + av(k2))2 +M2

e (1 + bv(k2))2 − iε (19)

Hereafter the denominator in (19) will be denoted by
Dv(k2) − iε, thus D

(−M2
t )

v = 0. As pointed out in [4],
in order to find additional relations between the two sets
(av, bv) and (αHF , βHF ) one may use (14) and the relation
(x− iε)−1 = P/x+ iπδ(x). Since αHF and βHF should be
real, comparing (19) with (14), we obtain

αHF (k2) =
1
π

Im
1 + av(k2)
Dv(k2)

(20a)

βHF (k2) =
1
π

[
Me

Mt

]
Im

1 + bv(k2)
Dv(k2)

(20b)

for k2 = k2 − k2
0 < −m2

1. (20) shows that αHF = βHF =
0, if av and bv are real. Since according to (18) av and
bv indeed become complex if k2 < −m2

1, (20) will give
us nonzero solutions of αHF and βHF . Either αHF and

βHF or av and bv can be solved from (18) and (20) self-
consistently [4]. Now let us consider the contribution due
to G0

ed [see (11)]. We may define GdHF (k) by

GHF (k) = GvHF (k) +GdHF (k) (21)

From (7) and (13) we have

Σx
HF (k) = Σxv

HF (k) +Σxd
HF (k), (22)

Σxd
HF = −g2

s

∫
d4q

(2π)4
GdHF (q)∆0(k − q). (23)

Following the argument of [2], one can ascertain that
Σxd
HF (k) is finite. Thus, Σx

CTC = Σxv
CTC and one gets (22).

It is known [2] that Σxd
HF may be decomposed as

Σxd
HF (k) = γ · kad(k2, k0) + iγ4k0cd(k2, k0)

−iMebd(k2, k0) (24)

Substituting (22) into (8) and taking account of (9), (15)
and (24), we obtain

GHF (k) ≡ GFHF (k) +GDHF

= (γµk∗µ + iM∗e )[
−1

k∗2 +M∗2e − iε
+θ(k0)θ(kF − |k|)2πiδ(k∗2 +M∗2e )]

= (γµk∗µ + iM∗e )[
−1

k∗2 +M∗2e − iε

+
πi

f ′(Ek)E∗k
θ(kF − |k|)δ(k0 − Ek)] (25)

which defines GFHF and GDHF and where the starred quan-
tities are given by

k∗µ = (k(1 + av + ad), ik0(1 + av + cd)) (26a)

M∗e = Me(1 + bv + bd) (26b)

E∗k = Ek(1 + av + cd) = ±[k∗2 +M∗2e ]1/2 (26c)

and f(k0) = k∗0 − E∗k , f(Ek) = 0, f ′(Ek) = ∂f
∂k0

∣∣∣
k0=Ek

with E∗k taking the positive root. Since GdHF = GHF −
GvHF , using (15), (19), (24) and (25), one finds from (23)

ad(k, k0)

= −ig2
s

∫
d4q

(2π)4

k · q
k2
· [ad(q2, q0)D − (1 + av(q2))∆D]

DdD[(k − q)2 +m2
s]

−g
2
s

2

∫ kF

0

d3q

(2π)3

k · q
k2
{ 1 + av(q2) + ad(q2, q0)
f ′(Eq)E∗q [(k − q)2 +m2

s]
}
q0=Eq

(27a)

cd(k2, k0)

= −ig2
s

∫
d4q

(2π)4

q0

k0
· [cd(q2, q0)D − (1 + av(q2))∆D]

DdD[(k − q)2 +m2
s]

−g
2
s

2

∫ kF

0

d3q

(2π)3

{ 1
k0f ′(Eq)[(k − q)2 +m2

s]
}
q0=Eq

(27b)
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bd(k, k0)

= ig2
s

∫
d4q

(2π)4
· [bd(q2, q0)D − (1 + bv(q2))∆D]

DdD[(k − q)2 +m2
s]

+
g2
s

2

∫ kF

0

d3q

(2π)3

{ 1 + bv(q2) + bd(q2, q0)
f ′(Eq)E∗q [(k − q)2 +m2

s]
}
q0=Eq

(27c)

where we have

D ≡ D(q2) = q2(1 + av(q2))2 +M2
e (1 + bv(q2))2 (28)

Dd ≡ Dd(q2, q0)
= q2(1 + av(q2) + ad(q2, q0))2

−q2
0(1 + av(q2) + cd(q2, q0))2

+M2
e (1 + bv(q2) + bd(q2, q0))2

≡ D(q2) +∆D(q2, q0) (29)

Comparing (27) with (3.25) of [2], one notes that in the
latter the explicitly kF -dependent second term in each of
(27 a-c) has been missed out through an oversight. Clearly
these terms must be considered, otherwise one cannot take
the effect of the density distribution into account properly.
(27) shows that Σxd

HF (k) is indeed finite, as asserted in [2].
It is seen that our renormalization procedure for RSHFA
is greatly simplified and its final result is as simple as
that of RSFA. Though in principle, (27) can be solved
self-consistently by an adequately designed iterating pro-
cedure, we note that the four-dimensional integrals in (27)
are still too complicated to calculate. In sections starting
from four another formulation which is more convenient
for calculations will be developed.

According to the theory of renormalization we have
made the assertion that the renormalized tadpole self-
energy ΣT

HF = igs < φ(0) >HF +iMT may be regarded as
a parameter. This is clearly adequate. However, for com-
pleteness we would like to remark that in our formalism
it is also easy to establish a self-consistent equation for
ΣT
HF . Let us replace i[gs < φ(0) >HF +MT ] by ΣT

HF in
GHF (k) and substitute (21) along with (25) in (6). One
obtains

ΣT
HF = −i g

2
s

m2
s

∫
dτq

(2π)4
eiq0εTr{GvHF (q)

+[GFHF (q)−GvHF (q)] +GDHF (q)}
+ΣT

CTC (30a)

Evidently the contribution from GDHF is finite. By means
of (18-19) and (26-27) it is not difficult to see that the
divergences caused by GFHF are completely cancelled if
ΣT
CTC is chosen as

ΣT
CTC = i

g2
s

M2
s

∫
dτq

(2π)4
eiq0εTr

×{
3∑

n=0

1
n!

(δnGvHF (q)
δ(ΣT

HF )n

)
ΣT
HF

=0
(ΣT

HF )n

+
3∑
i=1

(
δGFHF (q)
δai

)ai=0 ai} (30b)

where for convenience we have denoted ad, cd and bd by
ai(i = 1, 2, 3). With ΣT

CTC given by (30b) we obtain from
(30a) a self-consistent equation for ΣT

HF , which is free of
divergences and which is similar to (4.25) in [2], though
derived in a simple way. However, it is always possible to
make another choice of ΣT

CTC which differs from (30b) by
a finite constant C. We note that C is well determined,
if Me or ΣT = i(M −Me) has been chosen empirically.
First we would like to point out that according to (4)
there should exist a general self-consistent equation for
ΣT . Consider nuclear matter and calculate < φ(0) >, for
instance, by the perturbation theory. It is easily seen that
F̂ ≡ igs < φ(0) > is a function of ΣT and kF . If F̂ is
finite, we immediately obtain ΣT = F̂ (ΣT , kF ). However,
F̂ is divergent. Thus, we have the general renormalized
self-consistent equation:

ΣT = F̂ (ΣT , kF ) +ΣT
CTC = F (ΣT , kF ) + C, (31a)

where F is the renormalized finite part of F̂ and C an un-
determined finite constant caused by the indefinite char-
acter of ∞. Let ΣT (k0

F ) be determined empirically at the
saturation density with kF = k0

F . According to (31a) C is
given by

C = ΣT (k0
F )− F (ΣT (k0

F ), k0
F ), (31b)

and one may use (31a) to predict the dependence of ΣT

(or Me) on kF . Clearly (31a) reduces to (30a) if RSHFA
is considered. Chin [7] derived (31a) in RHA and assumed
C = 0. Horowitz and Serot [12] calculated the HF baryon
self-energy under the assumption: GHF (k) ≈ GDHF (k).
Their results are thus finite and no ΣT

CTC should be in-
troduced. The density-dependence of the baryon effective
mass in nuclear matter has been studied in both [7] and
[12]. We would like to investigate the additional effect
of GFHF (k). The value of Me(k0

F ) at k0
F can be deter-

mined, for instance, as follows. Consider the Walecka σ−ω
model. We may first use the model parameters suggested
in [12, 13] to calculate the binding energy per nucleon
En = (E/B −M) as a function of Me and kF . By fitting
the experimental value of En at k0

F we may determine
Me(k0

F ), which can further be used to calculate the bulk
symmetry energy a4 as well as the nuclear compressibility
k−1
V . Their values serve to check the adequacy of the value

of Me(k0
F ) and to ask whether a variation of its value may

yield a better overall agreement. Certainly, to understand
the effect of the variation of parameters better, the model
parameters may be readjusted and Me(k0

F ) refitted. One
of our main purposes is to study the effects caused by the
renormalized contribution from the Dirac sea.

3 Renormalization of the meson propagator

The renormalization of the meson propagator has also
been considered in [2]. In RSHFA the scalar meson prop-
agator is given by

∆HF (k) = ∆0(k)− (2π)4δ(4)(k)[g−1
s ΣT

HF ]2

+∆0(k)Πx
HF (k)∆0(k) (32)
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Fig. 2. Diagrammatic representation of the meson propagator
in RSHFA, where the heavy solid lines designate GHF

Πx
HF (k) = +g2

s

∫
dτq

(2π)4
Tr[GHF (k + q)GHF (q)]

+Πx
CTC(k) (33)

The diagrammatic representation of ∆HF (k) is shown in
Fig. 2. Since according to (12), (22) and (25) we have

GFHF (k) = GvHF +GvHF (k)Σxd
HF (k)GFHF (k) (34)

and it has been shown in [2] that Σxd
HF (k) behaves as k−2

at large k, one sees that the divergence in Πx
HF is sheerly

caused by GvHF . Thus, for the renormalization of Πx
HF one

only needs to consider

Πxv
HF (k) = +g2

s

∫
dτq

(2π)4
Tr[GvHF (k + q)GvHF (q)]

+Πx
CTC(k) (35)

Since GvHF (k) −→ k−1 for large k, the integral in (35) is
quadratically divergent if τ −→ 4. As we allow that the
parameters in LCTC may be density-dependent, there is
no need to expand GHF in terms of ΣT

HF . According to
(2), Πx

CTC may be written as

Πx
CTC(k) = iζsk

2 + iα2 (36)

where ζs and α2 = δm2
s are the meson wavefunction and

mass counterterms, respectively. Using the renormaliza-
tion conditions

Πx
HF (k)

∣∣∣
k2=0

= 0;
∂Πx

HF (k)
∂k2

∣∣∣
k2=0

= 0 (37)

ond finds

α2 = −ig2
s

∫
dτq

(2π)4
Tr{[GvHF (q)]2} (38a)

ζs = −ig2
s

{ d

dk2

∫
dτq

(2π)4
Tr[GvHF (k + q)GvHF (q)]

}
k2=0

(38b)

With Πx
CTC determined by (36) and (38), Πx

HF (k) is obvi-
ously free of the ultraviolet divergence, i.e. the renormal-
ization is achieved. We note that in order to cancel the
divergences in Πx

HF four counterterms are introduced in
[2]. In addition to (36), terms associated with α3 and α4

in U(φ) are also needed. It is seen that in our formulation
the introduction of these additional terms is unnecessary.

4 A transformation relation

We shall establish a transformation relation between the
four- and three-dimensional representation of the baryon
self-energy. Though the derivation is elementary, the rela-
tion is needed not only to facilitate the calculation but also
to ensure that the three-dimensional calculation is worked
out in a Lorentz-invariant way. The baryon propagator is
given in (5). As is wellknown, ψ(x,0) may be expanded
as

ψ(x, 0) =
2∑
r=1

∫
d3p

(2π)3/2

[
b(pr)u(pr)eip·x

+d+(pr)v(pr)e−ip·x]

≡
4∑
r=1

∫
d3p

(2π)3/2
c(prr)u(prr)eipr·x

=
4∑
r=1

∫
d3p

(2π)3/2
c(pr)u(pr)eip·x (39)

where the sp states {u(pr)exp(ip ·x), r = 1, 2, 3, 4} consti-
tute a complete orthonormal set, b+(pr)(d+(pr)) denotes
a baryon (antibaryon) creation operator, c(prr) = b(pr),
pr = p if r = 1, 2, while c(prr) = d+(pr − 2), u(prr) =
v(pr−2), pr = −p if r = 3, 4, because v(ps) (s = 1, 2) de-
notes a negative energy spinor with momentum −p. The
spinors u(pr) satisfy the following completeness and or-
thonormal conditions

4∑
r=1

uα(pr)u+
β (pr) = δαβ , (40a)

u+(pr)u(ps) = δrs. (40b)

Substituting (39) into (5a) and using the translational in-
variance of the theory, we obtain

Gαβ(x1 − x2) =
4∑

r,s=1

∫
d4p

(2π)4
uα(pr)

1
i
G(pr, ps; p0)ūβ(ps)

×exp[ipµ(x1 − x2)µ], (41)

which shows that the Fourier transform of Gαβ(x) can be
written as

Gαβ(p) =
4∑

r,s=1

uα(pr)
1
i
G(pr, ps; p0)ūβ(ps). (42)

In (41-42) we have

G(pr, ps; p0) = i

∫ ∞
−∞

dteip0tG(pr, ps; t), (43a)

G(pr, ps; t = t1 − t2) =< T [c(pr, t1)c+(ps, t2)] > (43b)

and for any operator O we understand O(t) =
exp(iHt)Oexp(−iHt). The Dyson equation for
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G(pr, ps; p0) may be written as

G(pr, ps; p0) = G0(pr, ps; p0)

−
4∑

ξ,ζ=1

G0(pr, pξ; p0)M(pξ, pζ; p0)

×G(pζ, ps; p0) (44a)
G0(pr, ps; p0) = δr,sG

0(pr; p0)

= −δr,s[
1− n(pr)

p0 − E(pr) + iη

+
n(pr)

p0 − E(pr)− iη ], (44b)

where n(pr) = 1 if r = 3 and 4, while for r = 1 and 2,
n(pr) = 0 or 1 according as (pr) is unoccupied or occupied.
Note that for r = 3 and 4, E(pr) denotes the negative
energy. Inserting (44) into (42) and using (5b), we get

iG0
αβ(p) =

4∑
r=1

uα(pr)G0(pr; p0)ūβ(pr), (45a)

i
∑
ξζ

G0
αξ(p)Σξζ(p)G

0
ζβ(p) =

=
4∑

r,s=1

uα(pr)G0(pr; p0)M(pr, ps; p0)

×G0(ps; p0)ūβ(ps). (45b)

By means of (40) we immediately find

[iγ4Σ(p)]ηλ =
4∑

r,s=1

uη(pr)M(pr, ps; p0)u+
λ (ps), (46a)

M(pr, ps; p0) = u+(pr)iγ4Σ(p)u(ps). (46b)

(46) is the desired relation. The reason why M is referred
to as a three-dimensional representation will become clear
when we consider its explicit expression. The usefulness of
(46) will be demonstrated in the next section. Note that
in (46) one should substitute M(pr, ps; p0)−u(pr, ps) and
Σ(p)−Σu(p) for M and Σ, repectively [see, for instance,
(53b) and (63) below], if a sp potential u has been intro-
duced to determine the sp states.

5 A closed expression for the self-energy

As illustrated in section 2, in order to proceed with the
renormalization procedure we should first find analytic ex-
pressions for quantities which are not yet renormalized.
For this purpose we only need to consider the Lagrangian
density Ls given by (2a) without the counterterms. The
corresponding Hamiltonian may be written as

H =
∑
ηλ

(E(η)δηλ − uηλ)c+(η)c(λ)

+
∑
k

a+(k)a(k)ω(k)

−
∑
ηλk

[
f(ηλk)c+(η)c(λ)a(k) + h.c.

]
, (47)

where a+(k) denotes a meson creation operator, ω(k) =
[k2 + m2

s]
1
2 , uηλ an introduced sp potential, for instance

the HF potential, E(η) the sp energy determined by uηλ
and we have used the shorthand notation: for the baryon
indices η, λ, for instance, η = (pr),

∑
η =

∑4
r=1

∫
d3p,

while for the meson index k,
∑

k =
∫
d3k and

f(ηλk) = gs[(2π)32ω(k)]−
1
2 ū(η)u(λ)δ(q + k− p), (48)

It was mentioned in [14] that a closed expression for the
self-energy can be derived easily by the method suggested
there. Later such an expression has been given in [8] by
a different method. Here following [14], we shall derive an
expression which is more convenient for our purpose. We
have not normal-ordered H, as we shall understand that
the vacuum expectation value should be subtracted.

Let us consider the baryon propagator defined in
(43b):

G(α, β; t) = < T [c(α, t1)c+(β, t2)] >

=
1

2πi

∫ ∞
−∞

dp0e
−ip0tG(α, β; p0). (43b)

Since i∂O(t)
∂t = exp(iHt)[O,H]exp(−iHt) and

[c(α), H] =
∑
η

Kαηc(η)− F (α), (49)

F (α) =
∑
ηk

[
f(αηk)c(η)a(k) + f∗(ηαk)c(η)a+(k)

]
,(50a)

Kαη = E(α)δαη − uαη, (50b)

we find

i
∂

∂t1
G(α, β; t) = iδ(t)δα,β +

∑
η

KαηG(η, β; t)

−G(F (α), β; t), (51)

G(F (α), β; t) =< T [F (α, t1)c+(β, t2)] >, (52)

where F (α, t) = exp(iHt)F (α)exp(−iHt). The Fourier
transform of (51) has the form∑
η

(p0δαη −Kαη)G(η, β; p0) = −δα,β −G(F (α), β; p0).

(53a)

In order to make the above equation closed, one may intro-
duce the mass operator M through the following equation

G(F (α), β; p0) = −
∑
η

M(α, η; p0)G(η, β; p0). (54)
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Inserting (54) into (53a), we get

G(α, β; p0) = G0(α, β; p0)−
∑
ηλ

G0(α, η; p0)

×
[
M(η, λ; p0)− uηλ

]
G(λ, β; p0), (53b)

which is just (44a). Our aim is to find a closed expression
for M(η, λ; p0). Now let us operate i∂/∂t2 on G(α, β; t)
and G(F (α), β; t), respectively. Taking their Fourier trans-
forms, we obtain∑

η

G(α, η; p0)(p0δηβ −Kηβ)

= −δα,β −G(α, F (β); p0), (55a)

∑
η

G(F (α), η; p0)(p0δηβ −Kηβ)

= −g(α, β)−G(F (α), F (β); p0), (55b)

where g(α, β) and the relevant Green functions are as fol-
lows:

g(α, β) =
〈{
F (α), c+(β)

}〉
=
∑
k

{
f(αβk) < a(k) >

+f∗(βαk) < a+(k) >
}

(56)

G(α, F (β); t) =
〈
T [c(α, t1)F+(β, t2)]

〉
, (57a)

G(F (α), F (β); t) =
〈
T [F (α, t1)F+(β, t2)]

〉
. (57b)

Multiplying (54) by (p0δβγ−Kβγ) from the right and using
(55), we get∑

η

M(α, η; p0)
[
δηγ +G(η, F (γ); p0)

]
= −g(α, γ)−G(F (α), F (γ); p0). (58)

Using (54) and
∑
ξ G(η, ξ; p0)G−1(ξ, ζ; p0) = δηζ ,we have∑

η

M(α, η; p0)G(η, F (γ); p0)

= −
∑
ξζ

G(F (α), ξ; p0)

×G−1(ξ, ζ; p0)G(ζ, F (γ); p0). (59)

From (58) we obtain

M(α, γ; p0) = −g(α, γ)−Gir(F (α), F (γ); p0), (60a)

Gir(F (α), F (γ); p0) = G(F (α), F (γ); p0)

−
∑
ξζ

G(F (α), ξ; p0)G−1(ξ, ζ; p0)

×G(ζ, F (γ); p0). (60b)

As shown and emphasized in [14], the complicated sec-
ond term on the righthand side of (60b) actually need not
be calculated, becaused it exactly cancels the reducible
diagrams contained in the first term so as to make Gir
contain only irreducible diagrams. This is necessary and
satisfactory, since otherwise the iterating series derived
form (44)or (53b) will contain redundant terms. An irre-
ducible diagram is a connected diagram which cannot be
separated into two disjoint parts by cutting any internal
line. The above result shows that to calculate Gir only
such irreducible diagrams in its first term should be con-
sidered. This clearly makes (60) very useful. We note that
in the derivation of (60) no approximation has been made.
It is not difficult to see that the tadpole contribution is
rigorously given by −g(α, γ). This is in agreement with
what has been found in [8] and [9].

6 Self-consistent HF schemes

From (8) one obtains the following renormalized eigen-
value equation[

γµkµ − iMe +Σx(k)
]
k0=Ek

u(ks) = 0, (61)

where Ek and u(ks) are the eigenvalue and eigenspinor,
respectively. (61) is also a pole equation which determines
the poles of G(k). The zero-order approximation of G(k)
constructed by means of the single-particle (sp) states ob-
tained from (61) will be designated by G0

Σ(k), which sat-
isfies

G0
Σ = −

[
γµkµ − iMe +Σx(k.Ek)

]−1

, (62)

G(k) = G0
Σ(k) +G0

Σ(k)
[
Σx(k)−Σx(k, Ek)

]
G(k), (63)

where Σx(k, Ek) represents Σx(k) at k0 = Ek. The above
statement is general. (61) shows that iγ4Σ

x(k, Ek) may
be interpreted as a generalized HF potential. According
to (7) and (10) the self-consistent condition considered by
BS may be written as

Σx
HF (k) = −g2

s

∫
dτq

(2π)4

×
{
G0
e(q) +G0

e(q)
∞∑
n=1

[
Σx
HF (q)G0

e(q)
]n}

×40(k − q) +Σx
CTC(k)

= g2
s

∫
dτq

(2π)4

40(k − q)
γµqµ − iMe +Σx

HF (q)
+Σx

CTC(k). (64)

(64) is a nonlinear integral equation. Such a type of in-
tegral equations has already been studied in the non-
relativistic many-body theory [13]. Their solution contains
attractively a whole series of infinite sets of infinitely many
diagrams with each set repeating the structure of the pre-
vious one. The lowest order approximation Σx(k; 2) to
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Σx
HF (k) is obtained by keeping only the first term G0

e(q) in
the curved bracket of (64). Graphically Σx(k; 2) is shown
in Fig. 1b by a half-moon like (HML) figure bound by a
curved meson line and a baryon line, where the heavy line
is replaced by a thin one (see Fig.1a). In contrast, Σx

HF (k)
should be represented by a heavy HML figure (see Fig.1b)
with the heavy baryon line GHF (q), which, as shown in
Fig. 1a, is itself an infinite series of such heavy HML fig-
ures. Clearly each of them will again be represented by
the above series and this process will continue without an
end. Though (64) is quite rich in content, we note that
it is only a requirement for the Green function. Besides
the general connection that (61) is also the pole equation
of the baryon propagator, no additional ties are imposed
on them by (64). We would like to point out that there
is a self-consistent scheme which is mathematically much
simpler and enforces a closer tie between (61) and the
HP potential. Let G0

Σ(k; 2) be determined by Σx(k; 2) ac-
cording to (62). Substituting G0

Σ(q; 2) for GHF (q) in (7),
we obtain a new Σx

HF (k, σ), from which we find another
G0
σ(k) according to (61) and (62). Let us repeat the above

procedure. Replace now GHF (q) by G0
σ(q). From (7) and

(62) we get Σx
HF (k, σ

′
) and G0

σ′
(q). They are generally dif-

ferent from the previous set indicated by σ. Thus, there
arises the question which one is best to choose. Clearly
a reasonable answer is provided by the requirement that
one should have G0

σ(q) = G0
σ′

(q),which is assured by the
self-consisent condition

Σx
HF (k;σ) = −g2

s

∫
dτq

(2π)4
G0
σ(q)40(k − q) +Σx

CTC(k, σ)

= g2
s

∫
dτq

(2π)4

40(k − q)
γµqµ − iMe +Σx

HF (q, Eq;σ)
+Σx

CTC(k;σ) (65)

It is seen that there is only a slight difference between
(64) and (65) analytically, though their implications are
quite different. On their right-hand sides q0 in Σx

HF (q)
of (64) is a true variable, while there is no q0 variable in
Σx
HF (q, Eq;σ) of (65), because it has been set equal to Eq.

This makes the analytic structure of the integrand in (65)
as a function of q0 much simpler and the integration over
q0 easier. It will be shown that the transformation relation
given in section 4 will provide a convenient way to carry
out such an integration. According to (62) we have

G0
σ(q) = −

[
γµqµ − iMe +Σx

HF (q, Eq;σ)
]−1

= G0
e(q) +G0

e(q)Σ
x
HF (q, Eq;σ)G0

σ(q). (66)

Inserting (10) into (9). We obtain

Σx
HF (k;σ) = −g2

s

∫
dτq

(2π)4

×
[
G0
e(q) +G0

e(q)Σ
x
HF (q, Eq;σ)G0

σ(q)
]

×40(k − q) +Σx
CTC(k, σ). (67)

Setting k = (k, Ek) in (67), we get a closed equation
for Σx

HF (k, Ek;σ), which is the HF potential except for

a factor iγ4. Thus, (65) is really an additional require-
ment for the determination of the self-consistent HF po-
tential. In the following we shall consider the renormal-
ization of Σx

HF (k;σ). Form (66-67) it is seen that the
solution to (65) has already achieved a summation of a
partial infinite series. Thus, the results derived on the ba-
sis of (65), just as of (64), will also go beyond the sim-
ple perturbation calculation. Clearly, if Σ(k) is indepen-
dent of k0, we have Σ(k) − Σ(k, Ek) = 0. It is believed
in the HF theory that generally ΣHF (k, Ek) may be a
good approximation to ΣHF (k) in (63) [16]. The self-
consistent condition (65) suggests that the minimum of
∆GHF (k;σ

′
) = GHF (k) − G0

σ′
(k) may be achieved by

σ
′

= σ. However, the above statement is still a conjec-
ture, though it can be tested by numerical calculations.
There is some delicacy in the interpretation of Σ(k, Ek)
in (62). A remark is made in the appendix.

In RSHFA the eigenvalue equation (61) can be written
explicitly in the form

[γ · kA1(k2, k0) + iγ4k0A2(k2, k0)
−iMeA3(k2, k0)]k0=Eku(ks) = 0, (68)

where according to (26) we have A1 = 1 + av(k2) +
ad(k2, k0), A2 = 1 + av(k2) + cd(k2, k0) and A3 = 1 +
bv(k2) + bd(k2, k0). (18) shows that Aj(j = 1, 2, 3) will
become complex for k2 < −m2

1. Thus the eigenvalue Ek
may be complex and the sp basis determined by (68) is no
longer convenient for a many-body calculation. Let Arj de-
note the real part of Aj . One may substitute Arj for Aj in
(68) and the equation obtained in this way will be referred
to as the modified HF scheme [16]. Clearly nothing will be
changed if Aj is real. One easily finds that the eigenvalue
Ek satisfies

Ek = ±
{(Ar1(k2, k0)

Ar2(k2, k0)

)2

k2

+
(Ar3(k2, k0)
Ar2(k2, k0)

)2

M2
e

} 1
2

k0=Ek
(26c)

which has already been given in (26c) except for the su-
perscript r. Though for real arguments all the terms on
the righthand side of (26c) are real, its root Ek may
still be complex. This case will be regarded as abnor-
mal. Here we shall only consider the normal case, i.e.
for the Arj studied Ek are real and the eigenfunctions
{u(η) = u(ks)exp(ik ·x)} constitute a complete orthonor-
mal set. Let c+(ks) denote the creation operator of u(η).
In this modified scheme the approximate ground state
(GS) wavefunction |φ0 > satisfies

c+(ks)|φ0 >= 0, s = 3, 4;
c+(ks)|φ0 >= 0, s = 1, 2 and |k| < kF ;
c(ks)|φ0 >= 0, s = 1, 2 and |k| > kF .

Obviously we have

< φ0|c+(kr)c(ls)|φ0 >= n(kr)δ(k− l)δrs. (69)
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From (43) one has

< ψ0|c+(η)c(λ)|ψ0 >= −limt→0−G(λ, η; t) = ρηλ. (70)

Since the density matrix ρηλ is Hermitian, it can be di-
agonalized and the set of sp states which diagonalize it is
orthonormal. As is wellknown, this set is referred to as the
set of natural orbitals (NO) [17], i.e. in the basis of rel-
ativistic NO (RNO) we have ρηλ = n(η)δηλ, where n(η)
is the occupation number of u(η). If |φ0 > is a good ap-
proximation to the exact GS |ψ0 >, (69) shows that the
modified HF scheme fulfills the condition of RNO approx-
imately. Thus, it is not merely a simple approximation to
RSHFA and may be regarded as a choice made according
to RNO, while based on RSHFA. Form (70) it is seen that
RNO can also be calculated directly by means of the sp
Green function. For a comparison it is worth-while to con-
sider RNO as a choice for the sp basis, especially as it will
provide a natural extension to the region of k2 < −m2

1.
Since the Fermi energy E(kF ) is generally much smaller
than m1, it will be real and the expression for GDHF in
(25) remains valid, i.e. our arguments in previous sections
are meaningful regardless of the fact that Aj may become
complex.

7 Three-dimensional representation

In this section we shall show that in the potential scheme
the renormalized integral equations for the baryon self-
energy which includes effects from the Dirac sea can be
represented in a three-dimensional form. Using (46) and
(60), we note that the three-dimensional expression for
the not yet renormalized self-energy Σ̂HF (k;σ) can be ob-
tained in a simple way. Its renormalization is then consid-
ered and a self-consistent set of integral equations estab-
lished. Since according to (8) and (10) the tadpole self-
energy has already been taken account of by Me, we only
need to consider Σ̂x

HF (k;σ). By definition Σ̂x(k; 2) and
Σ̂x
HF (k;σ) are obtained by substituting G0

e(q) and G0
σ(q)

for GHF (q) in (7), respectively. From (46), (48) and (60) it
is not difficult to see that to find Σ̂x(k; 2) and Σ̂x

HF (k;σ)
one only needs to consider the zero-order approximation to
G(F (α), F (γ); p0) in (60b). What we have to pay attention
to is that for Σ̂x(k; 2) we should choose the free-particle
states with mass Me as the sp basis, while for Σ̂x

HF (k;σ)
the sp basis should be the HF states. By means of (50a),
(57b) and the following elementary zero-order relations:〈

T
[
c(prt1)c+(qst2)

]〉0

= δrsδ(p− q)
[
θ(t1 − t2)(1− n(pr))− θ(t2 − t1)n(pr)

]
×exp

[
− iE(pr)(t1 − t2)

]
, (71a)

where for r = 1 and 2 we have n(pr) = 1 or 0 according
as |p| ≤ kF or |p| > kF , while n(pr) = 1 if r = 3 and 4,〈

T
[
a(kt1)a+(lt2)

]〉0

= θ(t1 − t2)δ(k− l)e−iω(k)(t1−t2), (71b)

〈
T
[
a+(kt1)a(lt2)

]〉0

= θ(t2 − t1)δ(k− l)eiω(k)(t1−t2), (71c)

as well as their Fourier transforms we easily find that (60)
gives

M̂x(kr, ls; k0)

= g2
s ū(kr)

∫
d3q

(2π)3
{

2∑
λ=1

u(qλ)ū(qλ)
2ω(k − q)

·[ 1− n(qλ)
k0 − E(qλ)− ω(k − q) + iη

+
n(qλ)

k0 − E(qλ) + ω(k − q)− iη ]

+
4∑

λ=3

u(qλ)ū(qλ)
2ω(k − q) ·

1
k0 − E(qλ) + ω(k − q)− iη }u(ks)

×δ(k− l)

= M̂x(kr, ks; k0)δ(k− l). (72)

which shows that M̂x is of the three-dimensional form.
Inserting (72) into (46), we obtain the corresponding ex-
pression for Σ̂x

HF (k;σ) or Σ̂x(k; 2) according as u(kr) rep-
resents the HF eigenspinor or the free particle spinor. Let
us consider Σ̂x

HF (k;σ), which may be decomposed in the
same way as Σx

HF (k), namely

Σ̂xv
HF (k;σ) = Σ̂x

HF (k;σ)−Σxd
HF (k;σ)

= γµkµâv(k2)− iMeb̂v(k2), (73a)

Σxv
HF (k;σ) = Σ̂xv

HF (k;σ) +Σxv
CTC(k;σ)

= γµkµav(k2)− iMebv(k2), (73b)

Σxd
HF (k;σ) = γ · kad(k2, k0) + iγ4k0cd(k2, k0)

−iMebd(k2, k0), (73c)

where the symbol σ has been suppressed in the factors
a, b, and c, since no ambiguity will arise in this section.
From (68) and (26) we easily obtain

2∑
λ=1

u(kλ)u(kλ)

= (γ · k∗ + iγ4E
∗
k + iM∗e (k))(2iE∗k)−1, (74a)

4∑
λ=3

u(kλ)u(kλ)

= (−γ · k∗ + iγ4E
∗
k − iM∗e (k))(2iE∗k)−1. (74b)

Inserting (74) into (72) and noticing (46b), we get
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Σ̂x
HF (k;σ) = −g2

s

∫
d3q

(2π)3
{
γ · q∗ + iγ4E

∗
q + iM∗e (q)

4E∗qω(k − q)

× [
1− n(q)

k0 − Eq − ω(k − q) + iη

+
n(q)

k0 − Eq + ω(k − q)− iη ]

+
γ · q∗ + iγ4E

∗
q − iM∗e (q)

4E∗qω(k + q)[k0 + Eq + ω(k + q)− iη]
},(75)

where we have written n(qλ) = n(q), E(qλ) = Eq for
λ = 1 and 2 and E(qλ) = −Eq for λ = 3 and 4. Σ̂xv

HF (k;σ)
is defined and obtained from (75) by setting n(q) = 0 and
ad = cd = bd = 0. Clearly if we delete the asterisks in
(75), we get the expression for Σ̂x(k; 2). From (73) and
(75) one easily finds

âv(k2) = −g2
s

∫
d3q

(2π)3

kµqµ(1 + av(q2))
k2

[
1
A

+
1
B

], (76a)

b̂v(k2) = g2
s

∫
d3q

(2π)3
(1 + bv(q2))[

1
A
− 1
B

], (76b)

A = 4e∗qω(k − q)[k0 − eq − ω(k − q) + iη], (77a)

B = 4e∗qω(k + q)[k0 + eq + ω(k + q)− iη], (77b)

where q4 = ieq and

e∗q = eq(1 + av) = [q2(1 + av)2 +M2
e (1 + bv)2]1/2. (77c)

from (76-77) it is seen that both integrals diverge, even
though we have assumed that av and bv inside these inte-
grals are renormalized and finite. According to (73a) the
explicit expression of Σ̂xd

HF (k;σ) can be found straightfor-
wardly from (75) and (76). It will be shown that it is finite
as asserted in [2].

For the renormalization of Σ̂xv
HF (k;σ) we shall follow

the procedure described in Sec. 2. The counterterm can
be written as

Σxv
CTC(k;σ) = iMx − ζNγµkµ (78)

where the parameters Mx and ζN are determined by the
intermediate renormalization conditions. Making use of
the latter and (76), we have

av(k2) = âv(k2)− âv(0)

= −g2
s

∫
d3q

(2π)3

· k2

2ω(q)(e(q) + ω(q))2[k2 + (e(q) + ω(q))2 − iη]
,

(79a)

bv(k2) = b̂v(k2)− b̂v(0)

= g2
s

∫
d3q

(2π)3
· 1 + bv(q2)

2e∗(q)ω(q)(e(q) + ω(q))

· k2

k2 + (e(q) + ω(q))2 − iη . (79b)

In the derivation of (79) we have made use of the fact that
av and bv depend only on k2 = k2−k2

0. Thus we may first
set k2 = 0. After we have got the final result, which is now
a function of k2

0, we then change k2
0 to −k2 = k2

0−k2. It is
not difficult to see that (79) now gives a closed set of finite
integral equations for the renormalized av and bv. Our
main purpose is to find a calculable scheme for the density-
dependent case. If

∑xd
HF (k;σ) is finite, the counterterms

for Σ̂x
HF (k;σ) and Σ̂xv

HF (k;σ) should be the same. This
can be checked by means of (75). Indeed, we have

Σxd
HF (k;σ) = Σx

HF (k;σ)−Σxv
HF (k;σ)

= Σ̂x
HF (k;σ)− Σ̂xv

HF (k;σ). (80)

From (75) we easily find

k2ad(k2, k0) = −g2
s

∫
d3q

(2π)3

×{( k · q
4E∗(q)

[1 + av(q2) + ad(q2, q0)]

×[P (k, q, n(q)) +Q(k, q)])q0=E(q)

−(
k · q[1 + av(q2)]

4e∗(q)
f+(k, q))q0=e(q)}, (81a)

k0cd(k2, k0) = −g2
s

∫
d3q

(2π)3

×{1
4

[P (k, q, n(q)) +Q(k, q)]q0=E(q)

−1
4
f+(k, q)q0=e(q)}, (81b)

bd(k2, k0) = g2
s

∫
d3q

(2π)3
{(1 + bv(q2) + bd(q2, q0)

4E∗(q)
× [P (k, q, n(q))−Q(k, q)])q0=E(q)

−(
1 + bv(q2)

4e∗(q)
f−(k, q))q0=e(q)}, (81c)

where we have

P (k, q, n(q)) =
1

ω(k − q)

[
1− n(q)

k0 − E(q)− ω(k − q) + iη

+
n(q)

k0 − E(q) + ω(k − q)− iη

]
, (82a)

Q(k, q) = {ω(k+ q)[k0 +E(q) +ω(k+ q)− iη]}−1, (82b)

f±(k, q) = {ω(k − q)[k0 − e(q)− ω(k − q) + iη]}−1

±{ω(k + q)[k0 + e(q)
+ω(k + q)− iη]}−1. (83)

(81) is the set of integral equaitons for the determina-
tion of Σxd

HF (k;σ). Let ad, cd and bd be denoted by
ai(i = 1, 2, 3). If the integrals on the righthand side of
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(81) exist, it is seen that lim|k|→∞ ai(k2, k0 = E(k)) −→ 0
with a quite fast speed. On the other hand, this property
of ai ensures that the two terms in the integrand of each
integral in (81) cancel each other for large |q|. This means
that all the integrals in (81) are convergent. (81) may be
solved by an iterative procedure. The integrals involved
are clearly calculable. For instance, for a spherically sym-
metric problem every three-dimensional integral in (81)
can be reduced without much difficulty to an integral of
one dimension.

After (81) is established, we note that there is no ne-
cessity to calculate av and bv by means of (79). In the
appendix we have shown that G0

σ(k) can be written as

G0
σ =

−1
γµkµ − iM̃e

= − γµkµ + iM̃e

k2 + M̃2
e − iε

, (84a)

M̃e = Me(1 + bv(k̃2))/(1 + av(k̃2)), (84b)

where k̃2 = k2 − E2
k. It has been pointed out in the ap-

pendix that k̃2 is actually a constant independent of k2,
because it is a root of the following equation

k̃2(1 + av(k̃2))2 +M2
e (1 + bv(k̃2))2 = 0. (85)

Thus, the HF potential only effects a change of the mass
and G0

σ(k) may be regarded as a free baryon propagator
with an effective mass M̃e. Substituting G0

σ(k) into (65)
and using the Feynman integral parameterization, we get

Σxv
HF (k;σ) = −ig2

s

∫ 1

0

dx

∫
dτQ

(2π)4
· xγµkµ + iM̃e

[Q2 +K2(x, k2)]2

+Σxv
CTC((k;σ), (86a)

K2(x, k2) = x(1− x)k2 + (1− x)M̃2
e + xm2

s. (86b)

By means of the dimensional regularization and the inter-
mediate renormalization we obtain

av(k2) = âv(k2)− âv(0)

=
g2
s

16π2

∫ 1

0

dxx ln
K2(x, 0)
K2(x, k2)

, (87a)

bv(k2) = b̂v(k2)− b̂v(0)

=
g2
s

16π2

∫ 1

0

dx
1 + bv(k̃2)
1 + av(k̃2)

ln
K2(x, k2)
K2(x, 0)

. (87b)

It is seen that (85) and (87) build a closed set of equations.
Further we note that the integration over x in (87) can be
carried out analytically. Thus, (87) acturally involves no
integration and is much easier to handle, especially if one
wants to consider the case of complex aσ, bσ, (σ = v and
d), cd and E(kr). Obviously, (79) and (87) may also serve
as a cross check.

8 Biorthonormal representation

If Ek is complex, the sp states with different momenta
k are still orthogonal to each other in the case of nuclear
matter, but (40) no longer holds between positive and neg-
ative energy states. Therefore, in order to cover this case,
our above formulation must be generalized. Here we shall
consider the biorthonormal representation. Let {w(pr)}
be defined by

w+(ps)u(pr) = u+(pr)w(ps) = δrs, (88a)

i.e. {w(ps)} is the set biorthonormal to {u(pr)}. Obvi-
ously w(pr) = u(pr) if {u(pr)} is already an orthonormal
set. The creation operator c+(pr)[f+(qs)] of the sp state
u(pr)exp(ip ·x)[w(qs)exp(iq ·x)] satisfies the anticommu-
tation relations

{f+(qs), c(pr)} = {f(qs), c+(pr)} = δsrδ
3(q− p),

(89)
{f+(qs), f+(pr)} = {c+(qs), c+(pr)} = 0.

The relation for the annihilation operators is obtained
through the hermitian conjugation. The completeness re-
lation reads

4∑
r=1

uα(pr)w+
β (pr) = δαβ . (88b)

Besides(39), the Dirac field operator can also be expanded
as

ψ(x, 0) =
4∑
r=1

∫
d3p

(2π)3/2
f(pr)w(pr)eip·x, (90)

and the Hamiltonian may be written in the form

H =
∑
k

a+(k)a(k)ω(k) +
∑
ηλ

(E(η)δηλ − uηλ)f+(η)c(λ)

−
∑
ηλk

h(ηλk)f+(η)c(λ)[a(k) + a+(−k)], (91a)

h(ηλk) = gs[(2π)32ω(k)]−
1
2 w̄(pr)u(qs)

×δ(q + k− p). (91b)

(89) shows that the creation operator corresponding to
c(pr)[f(pr)] is f+(pr)[c+(pr)]. The zero-order approxima-
tion to the ground state wavefunction now satisfies

f+(pr)|φ0 >= 0 r = 3, 4, all p,
f+(pr)|φ0 >= 0 r = 1, 2, |p| < kF , (92)
c(pr)|φ0 >= 0 r = 1, 2, |p| > kF .

Substituting (90) into (5a), we obtain

Gαβ(x = x1 − x2)
= < T [ψα(x1)ψ̄β(x2)] >

=
∫

d4p

(2π)4
eipµxµ

4∑
r,s=1

uα(pr)
1
i
G(pr, ps; p0)w̄(ps),
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which implies

Gαβ(p) =
4∑

r,s=1

uα(pr)
1
i
G(pr, ps; p0)w̄β(ps), (93a)

where we have

G(pr, ps; p0) = i

∫ ∞
−∞

dteip0t

× < T [c(prt1)f+(pst2)] > . (93b)

The baryon number operator has the form

B =
∫
d3xψ+(x, 0)ψ(x, 0) =

∑
η

f+(η)c(η), (94)

which clearly commutes with H [see (91)] and is a
constant of motion. The contraction c(prt1)f+(qst2)︸ ︷︷ ︸ is

given by the zero-order approximation to G(pr, qs; t) =
< T [c(prt1)f+(qst2)] >. By means of (92) one easily finds

G0(pr, qs; t) = δrsδ(p− q)G0(pr; t), (95a)

G0(pr; t) = [θ(t1 − t2)(1− n(pr))

−θ(t1 − t2)n(pr)]e−iE(pr)t. (95b)

Obviously the contractions cc︸︷︷︸ and f+f+︸ ︷︷ ︸ are zero. We

note that the Fourier transform of (95) can still be written
in the form of (44b) even if E(pr) = Ere(pr) + iEim(pr)
with Eim(pr) 6= 0. In this case we may set η = 0. We
have to distinguish two cases: (1) Eim(pr) > 0 and (2)
Eim(pr) < 0. According to [18] and from (95), we obtain
the results:
(1) Eim(pr) > 0. In this case we have

G0(pr; t) =
1

2πi

{∫ ∞+iR

−∞+iR

dp0
−(1− n(pr))
p0 − E(pr)

e−ip0t

+
∫ ∞
−∞

dp0
−n(pr)

p0 − E(pr)
e−ip0t

}
, (96a)

where R is a real number and satisfies R > Eim(pr).
(2) Eim(pr) < 0. Here one obtains

G0(pr; t) =
1

2πi

{∫ ∞
−∞

dp0
−(1− n(pr))
p0 − E(pr)

e−ip0t

+
∫ ∞−iR
−∞−iR

dp0
−n(pr)

p0 − E(pr)
e−ip0t

}
, (96b)

where one should require R + Eim(pr) > 0. (96) shows
that (44b) is also valid for complex E(pr), if proper care is
taken over the contour integration. The occupation num-
ber n(pr) takes the same value as in (44b), though it is
now the zero-order approximation to < f+(pr)c(pr) >.
The Dyson equation for G(pr, ps; p0) may also be written
in the form of (44a). From (93a) one again obtains (45)

adn (46) except that now one should substitute w̄ for ū in
(45), w+ for u+ in (46). From (89) and (91) we have

[c(α), H] =
∑
η

(E(α)δαη − uαη)c(η)−X(α), (97a)

X(α) =
∑
ηk

h(αηk)c(η)[a(k) + a+(−k)]; (97b)

[f+(β), H] = −
∑
λ

(E(β)δλβ−uλβ)f+(λ)+W (β), (98a)

W (β) =
∑
λl

h(λβl)f+(λ)[a(l) + a+(−l)]. (98b)

Following the same procedure as described in section 5,
we obtain

M(α, γ; p0) = −g(α, γ)−Gir(X(α),W (γ); p0), (99a)

Gir(X(α),W (γ); p0) = G(X(α),W (γ); p0)

−
∑
ξζ

G(X(α), ξ; p0)G−1(ξζ; p0)

×G(ζ,W (γ); p0). (99b)

It is seen that (99) has the same form as (60). Indeed we
have g(α, γ) =< {X(α), f+(γ)} >, while the expressions
for the other terms can be obtained from (60) by sub-
stituting X(α) for F (α) and W (γ) for F+(γ). Following
(96), we shall understand that proper attention has been
paid to the integration contour. From (99) one immedi-
ately finds that the expression for Mx(kr, ks; k0) can be
obtained from (72) simply by substituting w̄ for ū, even if
the eigenvalue becomes complex. This implies that (75) is
also valid for complex E(pr), if we note that in this case
the correct expression for (74) should be the one where ū
is replaced by w̄. Since (79) and (81) follow straightfor-
wardly from (75), one concludes that they remain valid
even if aσ, bσ(σ = v and d), cd and E(pr) are complex.

9 Concluding remarks and discussion

We have demonstrated and emphasized the appropriate-
ness and advantage of the assumption that the parame-
ters in the counterterms may be density-dependent. Under
this assumption we have shown that the renormalization
of RSHFA can be worked out in a way no more compli-
cated than that of RSFA. It is known that the baryon
propagator is an important elementary building brick for
the relativistic many-body calcualtion. In order to be able
to calculate the correlation and medium effects one would
like to find for it an expression which is not only a good
approximation but also easy to handle. We have empha-
sized that the self-consistent scheme considered by BS is
different from the original HF scheme, which is much sim-
pler and can be formulated in a way quite similar to the
BS consideration. It has been referred to as the potential
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scheme in order to make a distinction between different
HF schemes. In Sec. 6 we have suggested that the mini-
mum of ∆GHF (k, σ′) = GHF (k)−G0

σ′(k) may be attained
through the self-consistent condition (65). If G0

σ(k) is a
good approximation to GHF (k), then we may substitute
G0
σ(k) for GHF (k). Since G0

HF (k) is much simpler than
GHF (k) [see (63)], this shows the advantage of the poten-
tial scheme. Indeed, if G0

σ(k) ≈ GHF (k), we have (65) ≈
(7) and the self-consistent condition studied by BS is also
solved. In addition, (67) demonstrates that the solution
to (65) has already achieved a summation of a partial in-
finite series. Thus, it is important to study the potential
scheme first. From the three-dimensional representation
(81) it is seen that this scheme provides not only a cal-
culable renormalization procedure which takes account of
vacuum polarization effects from the Dirac sea properly
but also a way to go beyond the simple perturbation cal-
culation. A numerical solution to (81) will be presented in
a succeeding paper.

We are very grateful to Profs. L. M. Yang, Y. B. Dai,
R. H. Wang and J. C. Su for valuable discussions. This work is
supported in part by the National Natural Science Foundation
of China and the Foundation of State Education Commission.

A remark on Σ(k, Ek) in G0
Σ(k)

A remark should be made on how to understand Σ(k, Ek)
in (62). For this purpose we only need to consider the case
of zero-density. We shall use G0

σ(k) to denote a typical
G0
Σ(k) obtained in the iterating procedure described in

section 6. Let us start with Σxv(k; 2) as the initial input.
By definition Σxv(k; 2) is given by

Σxv(k; 2) = g2
s

∫
dτq

(2π)4
G0
e(q)

i

(k − q)2 +m2
s − iε

+Σxv
CTC(k; 2), (A1a)

G0
e(q) =

−1
γµkµ − iMe

= − γµkµ + iMe

k2 +M2
e − iε

. (A1b)

(A1) shows that Σxv(k; 2) can be written as

Σxv(k; 2) = γµkµa0(k2)− iMeb0(k2). (A2)

As is wellknown , the eigenvalue of (61) with Σ(k) =
Σxv(k; 2) is determined by

Ek(2) = ±[k2 +M2
e ([1 + b0]/[1 + a0])2]1/2, (A3)

where the argument of either a0 or b0 is k̃2 = k2−Ek(2)2

[see (26)]. Substituting (A2) and the positive Ek(2) into
(62), we get

G0
Σ(k; 2)

=
γ · k(1 + a0) + iγ4(k0 + a0Ek(2)) + iMe(1 + b0)

(k0 + a0Ek(2))2 − (1 + a0)2Ek(2)2
.

(A4)

We observe that Ek(2) is indeed a pole ofG0
Σ(k; 2), but the

other pole is −(1 + 2a0)Ek(2) rather than k0 = −Ek(2).
This is certainly not desirable. Although the expression for
G0
Σ(k) is correct, we note that the simple-minded way of

evaluating Σ(k, Ek) is misleading. By definition G0
Σ(k; 2)

is the zero-order approximation to G(k; 2) = −[γµkµ −
iMe + Σxv(k; 2)]−1 and is constructed by the sp states
obtained from (61). By means of (44–45), it can also be
calculated as follows:

G0
Σ(k; 2)

= i
4∑
r=1

u(kr)ū(kr)[
1− n(kr)

k0 − E(kr) + iε
+

n(kr)
k0 − E(kr)− iε ]

= i
γ · k∗ + iγ4E

∗
k(2) + iM∗e

2iE∗k(2)(k0 − Ek(2) + iε)

+i
−γ · k∗ + iγ4E

∗
k(2)− iM∗e

2iE∗k(2)(k0 + Ek(2)− iε)

=
γµkµ + iMe([1 + b0]/[1 + a0])

k2
0 − (Ek(2)− iε)2

=
−1

γµkµ − iMe([1 + b0]/[1 + a0])
, (A5)

where E∗k(2) = (1 + a0)Ek(2) and E(kr) = Ek(2) if r = 1
and 2, while E(kr) = −Ek(2) if r = 3 and 4. (A5) is the
desired result. It takes account of the correct pole property
from the beginning. According to (A3), we note that k̃2

should be a root of the following equation

k̃2(1 + a0(k̃2))2 +M2
e (1 + b0(k̃2))2 = 0. (A6)

Since a0 and b0 depend only on k̃2, (A6) shows that k̃2 is a
constant independent of k2. Comparing (A5) with (A1b),
one sees that G0

Σ(k; 2) may be regarded as a free baryon
propagator with an effective mass Me([1 + b0]/[1 + a0]).
Thus, if we now substitue G0

Σ(k; 2) for GHF (q) in (7) and
start a new round of iteration, we obtain (A2–A6) again,
though with new a and b replacing a0 and b0, respectively.
By means of the method of deduction from n to n+1, one
concludes that generally one has

G0
σ(k) = −{γµkµ − iMe

×([1 + bv(k̃2)]/[1 + av(k̃2)])}−1, (A7a)

Σxv
HF (k;σ) = γµkµav(k2)− iMebv(k2), (A7b)

Ek = ±{k2 +M2
e ([1 + bv(k̃2)]/[1 + av(k̃2)])2}1/2, (A7c)

where k̃2 = k2 −E2
k and following (9), we have added the

subscript HF to Σxv(k;σ). (A7c) again shows that k̃2 is a
root of

k̃2(1 + av(k̃2))2 +M2
e (1 + bv(k̃2))2 = 0. (A8)

Thus, it is a constant independent of k2. Besides, (A7a)
implies that we have

Σxv
HF (k, Ek;σ) = iMe[av(k̃2)− bv(k̃2)]

×(1 + av(k̃2))−1. (A9)
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Indeed, if we substitute (A7b) into (61), we find

(γ · k + iγ4Ek)u(ks) = iMe
1 + bv(k̃2)
1 + av(k̃2)

u(ks), (A10)

which gives (A9) immediately.
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